Rayon Analyse mathématique
Astérisque, n° 374. Sobolev estimates for two dimensional gravity water waves

Fiche technique

Format : Broché
Nb de pages : VIII-241 pages
Poids : 400 g
Dimensions : 18cm X 24cm
ISBN : 978-2-85629-821-3
EAN : 9782856298213

Sobolev estimates for two dimensional gravity water waves


Série | Astérisque
Paru le
Broché VIII-241 pages

Quatrième de couverture

Our goal in this volume is to apply a normal forms method to estimate the Sobolev norms of the solutions of the water waves equation. We construct a paradifferential change of unknown, without derivatives losses, which eliminates the part of the quadratic terms that bring non zero contributions in a Sobolev energy inequality. Our approach is purely Eulerian: we work on the Craig-Sulem-Zakharov formulation of the water waves equation.

In addition to these Sobolev estimates, we also prove L2-estimates for the (...)AlphaxZß-derivatives of the solutions of the water waves equation, where Z is the Klainerman vector field t(...)t + 2x(...)x. These estimates are used in the paper [6]. In that reference, we prove a global existence result for the water waves equation with smooth, small, and decaying at infinity Cauchy data, and we obtain an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds. The proof of this global in time existence result relies on the simultaneous bootstrap of some Hölder and Sobolev a priori estimates for the action of iterated Klainerman vector fields on the solutions of the water waves equation. The present volume contains the proof of the Sobolev part of that bootstrap.

Avis des lecteurs

Du même auteur : Thomas Alazard

Analyse et équations aux dérivées partielles

Du même auteur : Jean-Marc Delort