Rayon Mathématiques
Calcul intégral

Fiche technique

Format : Broché
Nb de pages : XIII-460 pages
Poids : 756 g
Dimensions : 15cm X 23cm
ISBN : 978-2-84225-053-9
EAN : 9782842250539

Calcul intégral


Paru le
Broché XIII-460 pages

Quatrième de couverture

L'objectif de ce livre, écrit pour les étudiants de troisième année dé licence, mais qui conviendra à un public plus large, est l'enseignement de l'analyse : l'intégrale de Lebesgue y est considérée comme un outil, et non comme l'objet principal de l'étude, les définitions et les techniques fondamentales étant mises en place aussi rapidement que possible, il s'agit d'apprendre à les utiliser. L'auteur observe en même temps que beaucoup de questions d'analyse ne se comprennent bien qu'en « passant dans le complexe ». Si les fonctions analytiques sont souvent enseignées à part, dans toutes les grandes questions d'analyse, techniques de calcul intégral, analyse de Fourier et utilisation de la variable complexe sont en fait étroitement associées.

Un chapitre est donc consacré à l'analyse complexe immédiatement après le chapitre qui traite de l'intégration des fonctions continues et avant ceux qui sont consacrés à l'intégrale de Lebesgue (intégration dans R et Rn, espaces Lp, convolution) et aux séries et intégrales de Fourier.

La volonté d'enseigner le calcul intégral par son usage se manifeste aussi dans les très belles applications disséminées tout au long de l'ouvrage, et toujours traitées simplement : méthodes de Laplace et de la phase stationnaire, formule sommatoire d'Euler-MacLaurin, méthode du col, fonction d'Airy, aire de la sphère, poussée d'Archimède, polynômes de Legendre, quadrature gaussienne, espace de Sargmann..., applications qu'on rencontre rarement dans les cours d'intégration. Le dernier chapitre résume cette approche. On y montre comment avec un peu d'analyse de Fourier et de fonctions analytiques on peut obtenir de magnifiques formules liées à l'équation de la chaleur et aux nombres premiers.

Avis des lecteurs

Du même auteur : Bernard Candelpergher

Théorie des probabilités : une introduction élémentaire

Fonctions d'une variable complexe

Approche de la résurgence

Les séries divergentes, d'Euler à Ramanujan