Fiche technique
Format : Broché
Nb de pages : 440 pages
Poids : 777 g
Dimensions : 16cm X 24cm
EAN : 9782880741365
Introduction, bibliothèque et périphériques graphiques, traçage, remplissage
Quatrième de couverture
Né à Bienne, Philippe Schweizer obtient un diplôme d'ingénieur électricien de l'Ecole polytechnique fédérale de Lausanne en 1982. Engagé comme assistant au Laboratoire de micro-informatique, il travaille successivement sur les écrans graphiques, la conception de circuits VLSI et les compilateurs. En 1984, il participe au séminaire d'informatique organisé par l'Universidad del Valle à Cali, Colombie, et l'année suivante au cours postgrade en informatique technique consacré à l'infographie et ses applications, à l'EPFL. Depuis 1984, il est chargé du cours d'infographie.
L'infographie, ou informatique graphique, est l'union de moyens informatiques et de techniques graphiques pour résoudre des problèmes essentiellement graphiques, l'un de ses aboutissants étant la conception assistée par ordinateur. Ce domaine est à l'origine d'un renouveau dans l'informatique, qui vise à rendre les applications plus conviviales en les organisant autour d'une interaction homme-machine graphique.
Cet ouvrage en deux volumes, qui est destiné aux étudiants en informatique au niveau universitaire et aux développeurs d'applications informatiques, présente les équipements et les algorithmes spécifiques au graphique. Il se caractérise par une orientation vers les stations de travail conviviales, s'éloignant ainsi des traditionnels terminaux graphiques aujourd'hui dépassés. Il ne traite pas seulement du classique dessin au trait, ne permettant de représenter les objets que par leur squelette filiforme, mais vise l'obtention d'une représentation de qualité presque photographique, comme le réclament les utilisateurs.
Les algorithmes, qui forment le coeur de ce livre, sont présentés dans le langage Modula-2 (successeur de Pascal) en se basant sur une bibliothèque orientée vers la manipulation d'objets graphiques. Cette bibliothèque a été spécialement définie pour faciliter la description systématique et l'expérimentation des algorithmes. Pour mieux expliquer leur fonctionnement, des exemples sont donnés dans des cas concrets.