Rayon Géométrie
Le problème de l'espace : Sophus Lie, Friedrich Engel et le problème de Riemann-Hemholtz

Fiche technique

Format : Broché
Nb de pages : 324 pages
Poids : 498 g
Dimensions : 16cm X 23cm
ISBN : 978-2-7056-6939-3
EAN : 9782705669393

Le problème de l'espace

Sophus Lie, Friedrich Engel et le problème de Riemann-Hemholtz


Collection(s) | ANR
Paru le
Broché 324 pages

Quatrième de couverture

Est-il possible de caractériser l'espace euclidien tridimensionnel qui s'offre si immédiatement à l'intuition physique au moyen d'axiomes mathématiques simples et naturels ? Plus généralement, est-il possible de caractériser les espaces de Bolyai-Lobatchevskii à courbure constante négative, ainsi que les espaces de Riemann à courbure constante positive, à l'exclusion de toute autre géométrie contraire à une intuition directe ?

À une époque (1830-1850) où l'émergence nécessaire des géométries dites non-euclidiennes devenait incontestable, c'est Riemann qui a soulevé cette question profonde et difficile dans son discours d'habilitation (1854), sans chercher, toutefois, à la résoudre complètement. Helmholtz (1868) l'interprétera en conceptualisant le mouvement des corps dans l'espace et il tentera d'établir rigoureusement que le caractère métrique et localement homogène d'un espace se déduit d'axiomes de mobilité maximale pour des corps rigides.

Mais il fallut attendre les travaux de Sophus Lie, et notamment la Theorie der Transformationsgruppen (2100 pages, 1884-1893) écrite en collaboration avec Friedrich Engel, pour qu'une solution complète et rigoureuse soit apportée à ce fascinant problème, à la fois au plan local et au plan global. L'introduction historique, philosophique et mathématique ainsi que la traduction que nous proposons ici aspirent à faire connaître un aspect de l'oeuvre monumentale de Sophus Lie qui demeure essentiellement peu évoqué au sein de la philosophie traditionnelle géométrique.

Biographie

Joël Merker, agrégé de mathématiques et de philosophie, spécialiste d'analyse et de géométrie à plusieurs variables réelles ou complexes, chercheur au CNRS - Département de Mathématiques et Applications, École Normale Supérieure.

Avis des lecteurs