Fiche technique
Format : Broché
Nb de pages : IX-338 pages
Poids : 530 g
Dimensions : 16cm X 23cm
ISBN : 978-2-7598-0564-8
EAN : 9782759805648
Le spectre des surfaces hyperboliques
Quatrième de couverture
Le spectre des surfaces hyperboliques
Cet ouvrage est une introduction à la théorie spectrale du laplacien sur les surfaces hyperboliques (de courbure -1), compactes ou d'aire finie. Pour certaines de ces surfaces, dites « surfaces hyperboliques arithmétiques », les fonctions propres sont des objets de nature arithmétique et des outils d'analyse sont employés conjointement à des méthodes puissantes de théorie des nombres pour les étudier.
Après une introduction à la géométrie hyperbolique des surfaces insistant sur celles qui sont arithmétiques, puis une introduction aux méthodes d'analyse spectrale de l'opérateur de Laplace sur celles-ci, l'auteur développe l'analogie géométrie (géodésiques fermées) - arithmétique (nombres premiers) en démontrant la formule des traces de Selberg. Outre des applications importantes à l'arithmétique, l'auteur propose des applications à la statistique spectrale de l'opérateur de Laplace et à la propriété d'unique ergodicité quantique (théorème d'unique ergodicité quantique arithmétique, récemment démontré par Elon Lindenstrauss).
L'ouvrage, issu de plusieurs cours de M2 à Orsay et à l'Université P. & M. Curie, permet au lecteur de parcourir un champ mathématique classique et d'être conduit vers des domaines de recherche très actifs.