Fiche technique
Format : Broché
Nb de pages : 155 pages
Poids : 402 g
Dimensions : 17cm X 24cm
ISBN : 978-2-84884-213-4
EAN : 9782848842134
Quatrième de couverture
Les ensembles
Aux fondements des mathématiques
¤ Histoire d'une théorie révolutionnaire
¤ Ensembles, relations et applications
¤ Opérations, structures, nombres
¤ L'infini et les paradoxes
¤ La théorie et ses axiomes
La théorie des ensembles a laissé un souvenir à tous ceux qui sont passés par les « maths modernes ». Son cadre axiomatique, que certains ont pu percevoir comme rigide, permet de « dérouler » l'ensemble du savoir mathématique. Comment ? C'est ce que propose de découvrir cet ouvrage en levant le voile sur l'origine et la construction de cette théorie.
Tout est parti d'un malaise scientifique profond, la crise des fondements. L'édifice mathématique, que l'on croyait solide et inaltérable, était en fait morcelé de contradictions et d'objets mal définis ! L'introduction des ensembles à la fin du XIXe siècle a permis d'assainir la situation, tout en donnant naissance à son lot de paradoxes, d'impossibilités, de situations défiant l'intuition...
Un ensemble est une collection d'objets entre lesquels peuvent exister des relations diverses. C'est ainsi qu'émergent les notions de structures et de fonctions, qui régissent la majorité des concepts mathématiques. La construction des nombres et une nouvelle approche de la géométrie en découlent de manière naturelle. Une telle simplicité conceptuelle confère aux ensembles et aux fonctions une efficacité redoutable !
Mais choisir les bons axiomes pour développer la théorie des ensembles et décrire les mathématiques (et, au-delà, toutes les sciences !) n'est pas une mince affaire...